Gábor Bazsó, a Sándor Góbi, a György Tarczay a,*

aLaboratory of Molecular Spectroscopy, Institute of Chemistry, Eötvös University, PO Box 32, H-1518, Budapest 112, Hungary

Near-Infrared Radiation Induced Conformational Change and Hydrogen Atom Tunneling of 2-Chloropropionic Acid in Low-Temperature Ar Matrix

SUPPORTING INFORMATION
Figure S1. Full-range MI-IR spectra S-(-)-2-chloropropionic acid before and after NIR laser irradiation. a: Spectrum obtained after deposition in the dark (black), after 6951 cm$^{-1}$ (red), and after subsequent 6782 cm$^{-1}$ (blue) NIR laser irradiation. b: Spectrum obtained after deposition in the dark (black), after 6961 cm$^{-1}$ (red), and after subsequent 6766 cm$^{-1}$ (blue) NIR laser irradiation. c: Spectrum obtained after deposition in the dark (black) and after 6775 cm$^{-1}$ (red) NIR laser irradiation.
Figure S2. Intrinsic reaction paths of cis → trans conversions of formic, acetic, chloroacetic and 2-chloropropionic acids as obtained at the B3LYP/6-31G* and the MP2/6-311++G** levels of theory. The reference (zero) energy is set to the a: trans minimum, b: saddle point, c: cis minimum.
Figure S3. The dark process observed after the NIR irradiation of the OH stretching overtone of 1a.
Figure S4. The dark process observed after the NIR irradiation of the OH stretching overtone of 2c.
Figure S5. Decay of the integrated absorbance of ν_1 band of 1a. In the first 3908 minutes the IR source of the spectrometer was turned on only during the short measurements. After 3908 minutes the IR source was continuously on. Black dots are the direct measurements, red dots are corrected by the effect of the IR source.
Figure S6. Example of a Lorentzian band fit of the ν_1 band of 3a and 3b. Black curve: measured spectrum, grey: fitted Lorentzians, red: sum of fitted Lorentzians.